Radiation Hardened High Speed Fiber Optic Transceivers for Extreme Environments, Phase I

Completed Technology Project (2011 - 2011)

Project Introduction

We propose the development of transceiver offering wide bandwidth (1 Mbps to 10 Gbps) that operates in space environments targeted by NASA for robotic exploration. Fiber optics holds significant advantages over copper for high-speed data communications in space applications → it neither produces nor is affected by EMI, it offers ground isolation between electronic units, reduced power, reduced size and reduced weight. Mil-airframes are increasingly fielding fiber optic wiring infrastructures as a long-term solution to bandwidth upgrades (for example, Joint Strike Fighter, Raptor, F-18 and B-2) [1]. Space systems are coming on-line that route 100's of signals with bandwidths greater than 1 Gbps [2, 3 and see Potential Post Applications below]. As NASA engineers forecast the spacecraft trends for increasing science data throughput and on-board processing, the use of fiber optic data links between spacecraft subsystems has gained considerable interest.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Ultra Communications	Lead Organization	Industry	Vista, California
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Radiation Hardened High Speed Fiber Optic Transceivers for Extreme Environments, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	

Small Business Innovation Research/Small Business Tech Transfer

Radiation Hardened High Speed Fiber Optic Transceivers for Extreme Environments, Phase I

Completed Technology Project (2011 - 2011)

Primary U.S. Work Locations

California

Project Transitions

February 2011: Project Start

September 2011: Closed out

Closeout Summary: Radiation Hardened High Speed Fiber Optic Transceivers f or Extreme Environments, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/140215)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Ultra Communications

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

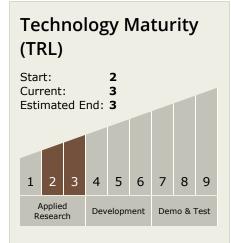
Carlos Torrez

Principal Investigator:

Charles Kuznia

Co-Investigator:

Charlie Kuznia



Small Business Innovation Research/Small Business Tech Transfer

Radiation Hardened High Speed Fiber Optic Transceivers for Extreme Environments, Phase I

Completed Technology Project (2011 - 2011)

Technology Areas

Primary:

- TX05 Communications, Navigation, and Orbital Debris Tracking and Characterization Systems
 - ☐ TX05.5 Revolutionary Communications Technologies
 - □ TX05.5.3 Hybrid Radio and Optical Technologies

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

